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ON ORDERS OF OPTIMAL NORMAL BASIS GENERATORS 

SHUHONG GAO AND SCOTT A. VANSTONE 

ABSTRACT. In this paper we give some experimental results on the multiplica- 
tive orders of optimal normal basis generators in F2n over F2 for n < 1200 
whenever the complete factorization of 2n - 1 is known. Our results show that 
a subclass of optimal normal basis generators always have high multiplicative 
orders, at least 0((2n - 1)/n), and are very often primitive. For a given opti- 
mal normal basis generator a in F2n and an arbitrary integer e , we show that 
ae can be computed in O(n * v(e)) bit operations, where v(e) is the number 
of l's in the binary representation of e. 

For a prime power q and a positive integer n, let Fq and Fqn be the finite 
fields of q and qn elements, respectively. A normal basis N for Fqn over 
Fq is a basis of the form (a, a q, ... 5 aqn ) , where a E Fqn . In this case a 

is said to be a normal element or normal basis generator. The complexity of 
N, denoted by CN, is defined to be the number of nonzero entries tij in the n 
expressions 

n-I 
a ,q a , tija.j O < i < n - 1 

j=0 

where tij E Fq. It is easy to prove that CN > 2nf- . If CN=2n - 1, 
then N is called an optimal normal basis. Mullin, Onyszchuk, Vanstone and 
Wilson [11] constructed the following two families of optimal normal bases, 
which are essentially all the optimal normal bases in finite fields as shown by 
Gao and Lenstra [6]. 
Construction I. Suppose n + 1 is a prime and q is primitive in Zn+I, where q 
is a prime or prime power. Then any primitive (n + 1 )st root of unity generates 
an optimal normal basis for Fqn over Fq . 
Construction II. Let 2n + 1 be a prime and assume that Z2*n+1 is generated by 
2 and -1 . Then a = y + y-1 generates an optimal normal basis for F2n over 
F2, where y is a primitive (2n + 1)st root of unity. 

Optimal normal bases have been successfully used in hardware implementa- 
tion of large finite fields in order to construct cryptosystems which are secure 
and efficient (see for example [1, 2]). There are several reasons for the interest 
in optimal normal bases, and in normal bases in general. When elements of 
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Fqn are represented under a normal basis over Fq , taking a qth power of 
an element in Fqn is just a cyclic shift of coordinates, so the cost is almost 
negligible. In practice q = 2, exponentiation by repeated square and multi- 
ply can be greatly expedited. Another nice property about normal bases is that 
their multiplication tables possess many symmetries, which is useful in prac- 
tical implementation of finite fields. For optimal normal bases, they have the 
additional property of being self-dual (Construction II only) and having the low- 
est complexity, which makes it feasible for hardware realization of large finite 
fields. 

In several cryptographic systems (including exponential pseudorandom num- 
ber generators), a fixed element of a group needs to be repeatedly raised to many 
different large powers. To make such systems secure, the fixed element must 
have high order. In any implementation of these systems, there should be an 
efficient algorithm for computing large powers of the fixed element. In this pa- 
per, we show by experimental results that the optimal normal basis generators 
given in Construction II have exactly this desired property: they have very high 
multiplicative orders, and large powers of them can be computed efficiently, as 
indicated by the following result. 
Theorem. Let a be as in Construction II. Then, for any integer e, ae can be 
computed in 0(n v(e)) bit operations, where v(e) denotes the number of 1 's 
in the binary representation of e. 

As v(e) < n for 0 < e < 2n - 1, ae can be computed in 0(n2) bit opera- 
tions. In comparison, we should mention that for an arbitrary ,B E F2., if F2n 
is represented by an optimal normal basis, Stinson [ 13] and von zur Gathen [7] 
showed that fie can be computed in about 0(n/ 10g2 n) multiplications in F2n., 
and thus in 0(n3/ 1og2 n) bit operations, where squaring is considered free and 
one multiplication in F2n under the normal basis needs 0(n2) bit operations. If 
F2n is represented by a power basis (which is of the form 1, , ... , n- 1), then, 
by using fast algorithms [12, 5] for multiplication, fie can be computed by the 
square and multiply method in 0(n log n loglog n log e), or 0(n2 log n log log n) 
bit operations. It is not known how to improve the time 0(n * v(e)) with pre- 
computations as in [3]. The reason is that we do not have an 0(n) algorithm 
for computing the product of two arbitrary elements in F2n . 

In the following, we assume that the conditions in Construction II are sat- 
isfied. Our goal is to determine the multiplicative order of a = y + y-1 We 
will compute in F2n represented under the optimal normal basis generated by 
a with basis elements ordered differently. 

We use the standard algorithm in [9, page 87] for determining the multiplica- 
tive orders of elements in finite fields. To apply this algorithm for computing 
the multiplicative order of an element in F2n , one needs to know the complete 
factorization of the integer 2n - 1. Tables of factorizations of integers of the 
form bn ? 1 for small b and n are given in [4] and updated versions are avail- 
able from the authors. In the following, we show how to efficiently compute axe 
for an arbitrary integer e. 

The optimal normal basis generated by * is ((, 2 , 2 )n, We will 
arrange the elements of the basis in a different order. For an integer i, define 
Yi = yi + y-i. Obviously, yo = 0 and y, = *a. As the multiplicative order of y 
is 2n + 1, it is easy to check that yi = yj if and only if i _ j mod 2n + 1. 
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SO Yi , Y2, ..., Yn are all the distinct nonzero yi's. We claim that 

{0i2 2n ={1 2 2 

The reason is that for each O < i < n - I ,2' = y2i + y2i = Y2 belongs to the 
set of the right-hand side, while for each 1 < i < n, since Z2*n+1 is generated 
by 2 and -1, there is an integer k such that i _ ?2k mod 2n + 1, and thus 
Yi = a2k belongs to the set of the left-hand side. 

Therefore, YI, Y2, ..., Yn form a basis of F2n over F2. To facilitate mul- 
tiplication of elements represented under this basis, we define a new function 
from the set of integers to the set {0, 1, ... , n}. For any integer i, define s(i) 
to be the unique integer such that 

O < s(i) < n, and i _ s(i) mod 2n + 1 or i - -s(i) mod 2n + 1. 

Obviously, s(0) = 0, s(i) = s(-i) and 

Yi = Ys(i) o2i = Ys(2i) forall i. 

As yi * yj = yi+j + yi-j for all i, j, we have 

Yi *j = Ys(i+j) + Ys(i-j) 1 < i,1 < n. 

Next we show how to compute the product yi * A, where 1 < i < n and A 
is an arbitrary element in F2n . Suppose that A = En= akYk, where ak E F2 
Then 

n n 

yi * A = Zak Yi Yk= E ak(Ys(k+i) + Ys(k-i)). 
k=i k=1 

Note that 

n n-i n 

E ak Ys(k+i) =E ak Yki + Z ak Y2n+ 1-(k+i) 
k=1 k=i k=n+l-i 

n n 

E Z ak-iyk + E a2nl+-(k+i)Yk 
k=i+l k=n+l-i 

n n 

E as(k-i)Yk + E as(k+i)Yk, 
k=i+l k=n+l-i 

n i n 

E ak Ys(k-i) =E akYi-k + akYk-i 
k=1 k=1 k=i+l 

i n-i 

Z ai-kyk + E ak+iYk 
k=1 k=i 

i n-i 

=-E as(k-i)Yk + E as(k+i)Yk 9 
k=1 k=1 
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where here, and hereafter, we assume that ao = 0. We see that 
n 

Yi* A = Z (as(ki) + as(k+i))Yk 
k=1 

c d n 

=Z (ai-k+ ak+i)Yk+ 
s, 

f (k)yk 
+ sE 

(ak-i+ a2n+1-(k+i))Yk, 
k=1 k=c+ 1 k=d+1 

where c = min{i, n - i}, d = max{i, n - i} = n - c and 

fai-k + a2n+l-(k+i) if i > n - i, f(k) 
ak-i+ak+i if i<n-i. 

This shows that yi A can be computed in 0(n) bit operations. 
Now, to compute ate we can assume that O < e < 2n l, as 2-1 =n1. 

Write e = En- 1 ek2k, where ek E {O, 1}. Then 

n-l n-l 
ae= J (o 2k)ek = IJ(Ys(2k))ek. 

k=O k=O 

This suggests that ae can be computed iteratively as follows: 
Algorithm: 
Input: An integer e with 0 < e < 2n - 1. 
Output: ate represented in the basis (Yi, Yn) . 

Step 1. Set A 1 = En=- Yk and compute the binary representation: 
e = Zk=Oek2k; 

Step 2. For k from 0 to n - 1, if ek = 1 then set A :=Ys(2k) A; 
Step 3. Return A; 
End. 

The correctness of the algorithm is obvious. The major cost is incurred at 
Step 2 where v (e) products of the form Yk * A are computed. Since we have 
shown that each such product can be computed in 0(n) bit operations, the 
total cost is 0(n * v(e)) bit operations. Therefore, ate can be computed in 
0(n * v (e)) bit operations, as claimed by the theorem above. 

By using the algorithms described above, we have computed the multiplica- 
tive order of a for n < 1200 where the conditions of Construction II are 
satisfied and the complete factorization of 2n - 1 is known. The results are 
summarized in Table 1. The index of a in F2n is defined to be (2n - 1)1/e, 
where e is the multiplicative order of a . Thus, index 1 in the table means that 
the corresponding a is a primitive element. The "?" in the table means that 
the complete factorization of the corresponding number 2n - 1 is not known 
yet, and thus the index computed from the partial factorization may not be the 
true index. 

Table 1 indicates that the multiplicative order of a is at least 0((2n - 1 )/n). 
This means that a always has very high multiplicative order. The last two values 
of n in the table are Mersenne primes; the corresponding optimal normal basis 
generators a are automatically primitive. Note that a is frequently primitive. 
In particular, one can check that if n is prime, then a is primitive in the table. 
We conjecture that this is always so, as stated below. 
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TABLE 1. Indices of optimal normal basis generators in F2. 

n Index n Index n Index n Index n Index 
2 1 183 1 413 1 683 1? 950 3 
3 1 186 3 414 3 686 3 953 1? 
5 1 189 1 419 1 690 151 965 1 
6 1 191 1 426 1 713 1? 974 3 
9 1 194 3 429 1 719 1? 975 1 

11 1 209 1 431 1 723 1 986 3 
14 1 210 1 438 3 725 1? 989 1? 
18 3 221 1 441 1 726 1 993 1 
23 1 230 1 443 1 741 7 998 1 
26 1 231 1 453 1 743 1? 1013 1? 
29 1 233 1 470 1 746 1 1014 7 
30 1 239 1 473 1 749 1? 1019 1? 
33 1 243 1 483 1 755 1 1026 7 
35 1 245 1 491 1 761 1? 1031 1? 
39 1 251 1 495 1 765 1 1034 3 
41 1 254 1 509 1 771 1 1041 1 
50 3 261 1 515 1 774 1 1043 1? 
51 1 270 7 519 1 779 1? 1049 1 
53 1 273 1 530 1 783 7? 1055 1? 
65 1 278 3 531 1 785 1? 1065 1? 
69 1 281 1 543 1 791 1.? 1070 1 
74 1 293 1 545 1 803 23? 1103 1 
81 1 299 1 554 1 809 19? 1106 381 
83 1 303 1 558 1 810 1 1110 9 
86 1 306 1 561 1 818 1 1118 1? 
89 1 309 1 575 1 831 1 1119 1 
90 1 323 1 585 1 833 1? 1121 1 
95 1 326 1 593 1? 834 1 1133 1? 
98 3 329 1 606 9 846 1 1134 3 
99 7 330 1 611 1? 866 1 1146 1 

105 1 338 3 614 3 870 1 1154 1 
113 1 350 3 615 1 873 1 1155 1 
119 1 354 3 618 1 879 1 1166 1 
131 1 359 1 629 1? 891 1 1169 1 
134 3 371 1 638 1 893 1? 1178 3? 
135 1 375 1 639 1 911 1? 1185 1 
146 1 378 3 641 1? 923 1? 1194 1? 
155 1 386 1 645 7 930 3 1199 1? 
158 1 393 7 650 3 933 1? 1211 1? 
173 1 398 1 651 1 935 1? 1218 1? 
174 3 410 11 653 1 938 1 9689 1 
179 1 411 1 659 1? 939 1? 21701 1 
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TABLE 2. Cunningham chains of primes 

1122659 2164229 2329469 10257809 10309889 
2245319 4328459 4658939 20515619 20619779 
4490639 8656919 9317879 41031239 41239559 
8981279 17313839 18635759 82062479 82479119 

17962559 34627679 37271519 164124959 164958239 
35925119 69255359 74543039 328249919 329916479 
71850239 138510719 149086079 656499839 659832959 

Conjecture. Suppose that n and 2n + 1 are both primes. Then, for any primitive 
(2n + 1)st root of unity y in F22n, a = y + y2l is a primitive element in F2 . 

Note that when n and 2n + 1 are both primes, Z2n+1 is always generated by 
2 and - 1. So the conditions in Construction II are satisfied and a generates 
an optimal normal basis for F2n over F2, which is easily seen to be a self- 
dual basis. This means that if the conjecture is true, then a generates a self- 
dual, primitive optimal normal basis for F2n over F2. Also note that it is not 
known if there are infinitely many integers n such that both n and 2n + 1 are 
primes, though it is conjectured so. It is interesting to note that D.H. Lehmer 
[8] found several chains of primes with each member one more than twice the 
previous one (such chains are called Cunningham chains), as listed in columns of 
Table 2. 

Finally, we remark that the inverse of a is easy to compute. Actually, if 
a-= Enl akYk , then 

ak = 1 if e is odd, and 0 if e is even, 

where e = k/2 if k is even and e = n - (k- 1)/2 if k is odd. So a'- can 
be computed in 0(n) bit operations. 
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